Strong Purifying Selection at Synonymous Sites in D. melanogaster
نویسندگان
چکیده
Synonymous sites are generally assumed to be subject to weak selective constraint. For this reason, they are often neglected as a possible source of important functional variation. We use site frequency spectra from deep population sequencing data to show that, contrary to this expectation, 22% of four-fold synonymous (4D) sites in Drosophila melanogaster evolve under very strong selective constraint while few, if any, appear to be under weak constraint. Linking polymorphism with divergence data, we further find that the fraction of synonymous sites exposed to strong purifying selection is higher for those positions that show slower evolution on the Drosophila phylogeny. The function underlying the inferred strong constraint appears to be separate from splicing enhancers, nucleosome positioning, and the translational optimization generating canonical codon bias. The fraction of synonymous sites under strong constraint within a gene correlates well with gene expression, particularly in the mid-late embryo, pupae, and adult developmental stages. Genes enriched in strongly constrained synonymous sites tend to be particularly functionally important and are often involved in key developmental pathways. Given that the observed widespread constraint acting on synonymous sites is likely not limited to Drosophila, the role of synonymous sites in genetic disease and adaptation should be reevaluated.
منابع مشابه
Selection, recombination and demographic history in Drosophila miranda.
Selection, recombination, and the demographic history of a species can all have profound effects on genomewide patterns of variability. To assess the impact of these forces in the genome of Drosophila miranda, we examine polymorphism and divergence patterns at 62 loci scattered across the genome. In accordance with recent findings in D. melanogaster, we find that noncoding DNA generally evolves...
متن کاملA multispecies approach for comparing sequence evolution of X-linked and autosomal sites in Drosophila.
Population genetics models show that, under certain conditions, the X chromosome is expected to be under more efficient selection than the autosomes. This could lead to 'faster-X evolution', if a large proportion of mutations are fixed by positive selection, as suggested by recent studies in Drosophila. We used a multispecies approach to test this: Muller's element D, an autosomal arm, is fused...
متن کاملPatterns of mutation and selection at synonymous sites in Drosophila.
That natural selection affects molecular evolution at synonymous sites in protein-coding sequences is well established and is thought to predominantly reflect selection for translational efficiency/accuracy mediated through codon bias. However, a recently developed maximum likelihood framework, when applied to 18 coding sequences in 3 species of Drosophila, confirmed an earlier report that the ...
متن کاملWidespread positive selection in synonymous sites of mammalian genes.
Evolution of protein sequences is largely governed by purifying selection, with a small fraction of proteins evolving under positive selection. The evolution at synonymous positions in protein-coding genes is not nearly as well understood, with the extent and types of selection remaining, largely, unclear. A statistical test to identify purifying and positive selection at synonymous sites in pr...
متن کاملDetecting positive and purifying selection at synonymous sites in yeast and worm.
We present a new computational method to identify positive and purifying selection at synonymous sites in yeast and worm. We define synonymous substitutions that change codons from preferred to unpreferred or vice versa as nonconservative synonymous substitutions and all other substitutions as conservative. Using a maximum-likelihood framework, we then test whether conservative and nonconservat...
متن کامل